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Suppose that S is an incomplete inner product space. In (Dvurečenskij, 1992, Gleason’s
Theorem and Its Applications, Ister Science Press, Bratislava, Kluwer Academic
Publishers, Dordrecht), A. Dvurečenskij shows that there are no finitely additive states
on orthogonally closed subspaces, F (S), of S that are regular with respect to finitely
dimensional spaces. In this note we show that the most important special case of the
former result—the case of the evaluations given by vectors in the “Gleason manner”—
allows for a relatively simple proof. This result further reinforces the conjecture that
there are no finitely additive states on F (S) at all.
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1. INTRODUCTION

Let S be a real or complex separable inner product space and let 〈·, ·〉 denote
the inner product of S. Let us denote by F (S) the set of all orthogonally closed
subspaces of S. A subspace M of S is in F (S) if M = M⊥⊥, where M⊥ = {x ∈ S :
〈x, y〉 = 0forally ∈ M}. It turns out that if we understand F (S) with the ordering
given by the inclusion relation and with orthocomplementation relation M −→
M⊥ as defined above, then F (S) becomes a complete orthocomplemented lattice.
However, F (S) does not have to be orthomodular. In fact, Amemiya and Araki
(1966) proved the following algebraic criterion for the (topological) completeness
of an inner product space S: an inner product space S is complete if and only if
F (S) is orthomodular.
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Let us now turn to measure-theoretic criteria for the completeness of S.
The following result by Hamhalter and Pták (1987) initiated a series of interesting
measure theoretic characterizations for the completeness of an inner product space
S (Dvurečenskij, 1992).

Theorem 1.1. An inner product space S is complete if and only if F (S) possesses
a σ -additive state.

In Pták (1988), Pták asked whether S has to be complete if F (S) possesses a
finitely additive state. Recently, Dvurečenskij and Pták (submitted) proved that if
S is an incomplete inner product space, then the assumption that there is a finitely
additive state on F (S) implies that the range of this state has to be the entire
interval [0, 1]. In this note we show that an inner product space S is complete if,
and only if, there exists u ∈ S̄ such that su defines a state on F (S), where by S̄ is
denoted the completion of S. Here, for any vector u ∈ S with ‖u‖ = 1, by su is
meant the “Gleason” assignment defined by

su : F (S) → [0, 1]

M �→ 〈PM̄u, u〉.
Before we launch on the proof proper, let us summarize the “state of the art”

of the state problem for F (S). If there are states on F (S) then there are pure states
on F (S) (Krein–Milman). But in view of the previous two facts these pure states
must be rather bizarre. Thus, a conjecture remains that for an incomplete space S

the lattice F (S) is stateless.

2. RESULTS

Let S be a separable inner product space and let S̄ be its completion. In this
section we mainly prove the result formulated in the introduction.

Theorem 2.1. A separable inner product space S is complete if, and only if,
there exists u ∈ S̄ such that

su : M �→ 〈PM̄u, u〉
defines a state on F (S).

Proof: If S is complete then, obviously, for every u ∈ S = S̄, su is a (σ -additive)
state on F (S) (F (S) = L(S) and this follows from Gleason’s theorem).

For the second implication, suppose that there exists a vector u ∈ S̄ such that
su is a state on F (S). We could be of certain importance in their own right. �
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Claim 1. Suppose that there exists u ∈ S such that

su : M �→ 〈PM̄u, u〉
defines a state on F (s). Then for every unit vector v ∈ S, sv defines a state on
F (S).

Proof: Let S̃ be a subspace of S̄ generated by s and u. Let v( 	= u) be a unit
vector in S and put P = [u] + [v]. Then S̃ = P ⊕ P ⊥. Set w̃ = v − 〈v, u〉u and
let w = w̃

‖w̃‖ . Similarly, let z̃ = u − 〈u, v〉v and put z = z̃
‖z̃‖ . Then P = [v] ⊕ [z] =

[u] ⊕ [w]. Define the map

T : S̃ → S̃

P ⊕ P ⊥ → S̃

p + p′ = αv + βz + p′ �→ αu + βw + p′.

T is a unitary operator on S̃, that is T is a bijective linear operator satisfying

〈x, y〉 = 〈T x, T y〉
for all x, y ∈ S̃.

By the continuity of T we can extend it over S̄. With a harmless abuse of
notation let us denote the extension again by T . We now show that if A is a
subspace of S, then T A = T Ā. Since T is continuous it follows immediately that
T Ā ⊂ T A. Let x ∈ T A. Then x = limi→∞ xi where xi ∈ T A for all i ∈ N . Let
yi ∈ A be such that Tyi = xi . Then we have

‖xi − xj‖2 = 〈Tyi − Tyj , T yi − Tyj 〉
= 〈T (yi − yj ), T (yi − yj )〉
= 〈yi − yj , yi − yj 〉
= ‖yi − yj‖2.

This implies that {yi} is Cauchy and therefore it converges to some y ∈ Ā. That
Ty = x follows again by the continuity of T .

We now show that for any A ∈ F (S), we have

‖PĀv‖2 = ‖PT Au‖2.

Let {ai} ⊂ A be an ONB of Ā. Then {T ai} is an ONB of T A (= T A) in T A. We
then have

ai = αiv + βiz + p′
i
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and therefore

T ai = αiu + βiw + p′
i .

This implies that

‖PAv‖2 =
∑

|〈ai, v〉|2

=
∑

|αi |2

=
∑

|〈T ai, u〉|2

= ‖PT Au‖2.

Thus, for any A ∈ F (S), sv(A) = ‖PAv‖2 = ‖PT Au‖2 = su(T A), and therefore
sv does indeed define a state on F (S). �

Claim 2. Suppose that, for each u ∈ S, su defines a state on F (S). Then for every
unit vector v ∈ S̄, sv defines a state on F (S).

Proof: Let v ∈ S \ S. There exists a sequence {vi} ⊂ S such that v = limi→∞ vi .
For any A ∈ F (S),

PĀv = PA lim
i→∞

vi

= lim
i→∞

PAvi

and therefore

sv(A) = lim
i→∞

svi
(A).

It is then not difficult to check that sv defines a state on F (S) (pointwise limits of
finitely additive states are finitely additive states). �

Claim 3. Let for any v ∈ S̄ sv defines a state on F (S). Let M be a closed subspace
of S. Then

M ∈ F (S)if, and only if, M̄⊥S = M̄⊥S̄ .

Proof: Let M ∈ F (S). We need to show that ¯M⊥S = M̄⊥S̄ . It is sufficient to
prove that M⊥S ⊃ M̄⊥S̄ . Let {ni : i ∈ IM ′ } be an orthonormal basis (ONB) in M⊥S

of ¯M⊥S , and let x̃ ∈ M
⊥S (x̃ 	= 0) be arbitrary. Put x = x̃

‖x̃‖ . Consider the state sx

on F (S).

1 = sx(S) = sx(M ∨ M⊥S )
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= sx(M) + sx(M⊥S )

= sx(M⊥S ) since x⊥M

=
∑

i∈IM′

|〈x, ni〉|2.

This implies that for all x̃ ∈ M
⊥S ,

‖x̃‖2 =
∑

i∈IM′

|〈x̃, ni〉|2.

Therefore it follows, by Parseval’s identity, that {ni : i ∈ IM ′ } is an ONB of M̄⊥S̄

and hence M⊥S = M
⊥S .

Now we prove the converse. Suppose that M⊥S = M
⊥S . To reach a contra-

diction, assume that M /∈ F (S). There exists v ∈ M⊥S⊥S \ M such that v⊥M⊥S

and v /∈ M . This implies that v⊥M⊥S and hence v ∈ M
⊥S̄⊥S = M . But this

would imply that v ∈ M ∩ S = M , since M is closed in S. This is the required
contradiction. �

Claim 4. Suppose that for every u ∈ S the mapping

M �→ 〈PMu, u〉
defines a state on F (S). Let M ∈ F (S) and let {xi} be any maximal orthonormal
system (MONS) in M . Then M = {xi}⊥S⊥S .

Proof: Let {mi} ⊂ M be an ONB of M and {ni} ⊂ M⊥S be an ONB of M⊥S =
M

⊥S . Then {xi} ∪ {ni} is a MONS of S. This implies that

M ∨ M⊥S = ∨[mi]
∨

∨[ni]

= S

= ∨[xi]
∨

∨[ni]

= {xi}⊥S⊥S ∨ M⊥S .

Certainly, we have {xi}⊥S⊥S ⊂ M . Take any unit vector y ∈ M and consider the
state sy . We have

1 = sy(S) = sy({xi}⊥S⊥S ∨ M⊥S )

= sy({xi}⊥S⊥S )

= ‖P{xi }⊥S⊥S
y‖.
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This implies that y ∈ {xi}⊥S⊥S and therefore

M = {xi}⊥S⊥S

which yields

M = {xi}⊥S⊥S .

�

Claim 5. F (S) is orthomodular.

Proof: Let A ⊂ B be in F (S). Let {ai} ⊂ A be an ONB of A. Extend {ai} to a
MONS {ai} ∪ {bi} of B. It is not difficult to see that {bi} is a MONS in A⊥S ∩ B

and that therefore

A ∨ (A⊥S ∧ B) = {ai}⊥S⊥S ∨ {bi}⊥S⊥S

= ∨[ai]
∨

∨[bi]

= B

This completes the proof of Theorem 2.7. �
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